243 research outputs found

    Schweizer Theologiestudenten in Franeker 1585-1650

    Get PDF

    Effects of di(n-butyl) phthalate exposure on foetal rat germ-cell number and differentiation: identification of age-specific windows of vulnerability: DBP effects on foetal germ cells

    Get PDF
    Environmental factors are implicated in increased incidence of human testicular germ‐cell cancer (TGCC). TGCC has foetal origins and may be one component of a testicular dysgenesis syndrome (TDS). Certain phthalates induce TDS in rats, including effects on foetal germ cells (GC). As humans are widely exposed to phthalates, study of the effects of phthalates on foetal rat GC could provide an insight into the vulnerability of foetal GC to disruption by environmental factors, and thus to origins of TGCC. This study has therefore characterized foetal GC development in rats after in utero exposure to di(n‐butyl) phthalate (DBP) with emphasis on GC numbers/proliferation, differentiation and time course for inducing effects. Pregnant rats were treated orally from embryonic day 13.5 (e13.5) with 500 mg/kg/day DBP for varying periods. GC number, proliferation, apoptosis, differentiation (loss of OCT4, DMRT1 expression, DMRT1 re‐expression, GC migration) and aggregation were evaluated at various foetal and postnatal ages. DBP exposure reduced foetal GC number by ∼60% by e15.5 and prolonged GC proliferation, OCT4 and DMRT1 immunoexpression; these effects were induced in the period immediately after testis differentiation (e13.5–e15.5). In contrast, DBP‐induced GC aggregation stemmed from late gestation effects (beyond e19.5). Foetal DBP exposure delayed postnatal resumption of GC proliferation, leading to bigger deficits in numbers, and delayed re‐expression of DMRT1 and radial GC migration. Therefore, DBP differentially affects foetal GC in rats according to stage of gestation, effects that may be relevant to the human because of their nature (OCT4, DMRT1 effects) or because similar effects are demonstrable in vitro on human foetal testes (GC number). Identification of the mechanisms underlying these effects could give a new insight into environment‐sensitive mechanisms in early foetal GC development that could potentially be relevant to TGCC origins

    Cell Separation in a Continuous Flow by Traveling Wave Dielectrophoresis

    Get PDF
    In this contribution we present a microfluidic chip for the continuous and label-free separation of cells. Strip electrodes produce a traveling electric field perpendicular to the pressure driven flow. Viable cells are deflected parallel to the field by traveling wave dielectrophoresis (twDEP) according to their volume and dielectric properties. With the present device we have successfully separated viable Saccharomyces cerevisiae and Jurkat T-cells from debris, non-viable cells and Lactobacillus casei

    Dynamic changes in DNA modification states during late gestation male germ line development in the rat

    Get PDF
    BACKGROUND: Epigenetic reprogramming of fetal germ cells involves the genome-wide erasure and subsequent re-establishment of DNA methylation. Mouse studies indicate that DNA demethylation may be initiated at embryonic day (e) 8 and completed between e11.5 and e12.5. In the male germline, DNA remethylation begins around e15 and continues for the remainder of gestation whilst this process occurs postnatally in female germ cells. Although 5-methylcytosine (5mC) dynamics have been extensively characterised, a role for the more recently described DNA modifications (5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC)) remains unclear. Moreover, the extent to which the developmental dynamics of 5mC reprogramming is conserved across species remains largely undetermined. Here, we sought to describe this process during late gestation in the male rat. RESULTS: Using immunofluorescence, we demonstrate that 5mC is re-established between e18.5 and e21.5 in the rat, subsequent to loss of 5hmC, 5fC and 5caC, which are present in germ cells between e14.5 and e16.5. All of the evaluated DNA methyl forms were expressed in testicular somatic cells throughout late gestation. 5fC and 5caC can potentially be excised through Thymine DNA Glycosylase (TDG) and repaired by the base excision repair (BER) pathway, implicating 5mC oxidation in active DNA demethylation. In support of this potential mechanism, we show that TDG expression is coincident with the presence of 5hmC, 5fC and 5caC in male germ cell development. CONCLUSION: The developmental dependent changes in germ cell DNA methylation patterns suggest that they are linked with key stages of male rat germline progression

    Dibutyl phthalate induced testicular dysgenesis originates after seminiferous cord formation in rats

    Get PDF
    Administration of dibutyl phthalate (DBP) to pregnant rats causes reproductive disorders in male offspring, resulting from suppression of intratesticular testosterone, and is used as a model for human testicular dysgenesis syndrome (TDS). DBP exposure in pregnancy induces focal dysgenetic areas in fetal testes that appear between e19.5-e21.5, manifesting as focal aggregation of Leydig cells and ectopic Sertoli cells (SC). Our aim was to identify the origins of the ectopic SC. Time-mated female rats were administered 750 mg/kg/day DBP in three different time windows: full window (FW; e13.5-e20.5), masculinisation programming window (MPW; e15.5-e18.5), late window (LW; e19.5-e20.5). We show that DBP-MPW treatment produces more extensive and severe dysgenetic areas, with more ectopic SC and germ cells (GC) than DBP-FW treatment; DBP-LW induces no dysgenesis. Our findings demonstrate that ectopic SC do not differentiate de novo, but result from rupture of normally formed seminiferous cords beyond e20.5. The more severe testis dysgenesis in DBP-MPW animals may result from the presence of basally migrating GC and a weakened basal lamina, whereas GC migration was minimal in DBP-FW animals. Our findings provide the first evidence for how testicular dysgenesis can result after normal testis differentiation/development and may be relevant to understanding TDS in human patients. © 2017 The Author(s)

    Prostaglandins, masculinization and its disorders:effects of fetal exposure of the rat to the cyclooxygenase inhibitor- indomethacin

    Get PDF
    Recent studies have established that masculinization of the male reproductive tract is programmed by androgens in a critical fetal ‘masculinization programming window’ (MPW). What is peculiar to androgen action during this period is, however, unknown. Studies from 20 years ago in mice implicated prostaglandin (PG)-mediation of androgen-induced masculinization, but this has never been followed up. We therefore investigated if PGs might mediate androgen effects in the MPW by exposing pregnant rats to indomethacin (which blocks PG production by inhibiting cyclooxygenase activity) during this period and then examining if androgen production or action (masculinization) was affected. Pregnant rats were treated with indomethacin (0.8 mg/kg/day; e15.5–e18.5) to encompass the MPW. Indomethacin exposure decreased fetal bodyweight (e21.5), testis weight (e21.5) and testicular PGE2 (e17.5, e21.5), but had no effect on intratesticular testosterone (ITT; e17.5) or anogenital index (AGI; e21.5). Postnatally, AGI, testis weight and blood testosterone were unaffected by indomethacin exposure and no cryptorchidism or hypospadias occurred. Penis length was normal in indomethacin-exposed animals at Pnd25 but was reduced by 26% (p<0.001) in adulthood, an effect that is unexplained. Our results demonstrate that indomethacin can effectively decrease intra-testicular PGE2 level. However, the resulting male phenotype does not support a role for PGs in mediating androgen-induced masculinization during the MPW in rats. The contrast with previous mouse studies is unexplained but may reflect a species difference
    corecore